Mechanical Engineering

Université Polytechnique Hauts-de-France

Name of the hosting institution in France	Université Polytechnique Hauts-de-France
Name of the host laboratory / research team	LAMIH UMR – CNRS 8201 Laboratoire d'Automatique de Mécanique
	et d'Informatique industrielles et Humaines
Address	LAMIH UMR – CNRS 8201, Université Polytechnique Hauts-de-France,
	Campus Mont Houy, 59313 VALENCIENNES Cedex 9
Name of the supervisor	Pr. Eric MARKIEWICZ
Function	Vice-President for Research
Email	Eric.Markiewicz@uphf.fr
Phone number	+33 3 27 51 13 02

Internship offer

Topic of the internship (title) Project in Mechanical Engineering

Proposed dates of the internship Start 02/09/2024 End 20/12/2024

Scientific and academic objectives of the internship:

Conduct quasi-static and dynamic experiments under uniaxial and mixed shear/compression loading directions to analyze the mechanical properties (stability, collapse modes, specific energy absorption,...) of various Pa12 architectured structures obtained by additive manufacturing. Quasi-static machine and a Split Hopkinson Pressure Bar (SHPB) apparatus will be used with additional advanced measurement techniques such as tracking and Digital Image Correlation (DIC). In the specific case of mixed shear/compression conditions, we aim to develop a special connecting system to detect and measure radial forces. In a second step, FEM modeling approach will be implemented to define digital twins of architectured structures with the better mechanical properties, aiding in lightweight protective structural design.

Does the project involve a French industry partner?	No
Name	/
Role of the industrial partner in the internship project	1
Main contact	
Email	1
Main contact industrial partner's branch in Australia	1
Email	1
Australian partner	
Is the internship project proposed in the framework of an	Yes
existing collaboration with an Australian partner university?	
Name of the Australian partner institution	Ongoing discussions with Swinburne University
Lab/department/team involved in the	Department of Mechanical Engineering and Product Design
collaboration	Engineering
Main contact in the Australian partner institution	Pr. Guoxing Lu
Function	Associate Dean Research
Email	glu@swin.edu.au
Outside of this ongoing collaboration, will students from oth	

Expected profile of applicant

Level of study	Master or PhD
Discipline	Mechanical Engineering
Prerequisite knowledge, qualities and skills	Bachelor degree in Mechanical Engineering, autonomy, rigorous scientific approach
Language of Internship	English
Other specific eligibility criteria	

